Source code for kornia.augmentation._2d.geometric.elastic_transform
from typing import Any, Dict, Optional, Tuple
import torch
from torch import Tensor
from kornia.augmentation._2d.geometric.base import GeometricAugmentationBase2D
from kornia.geometry.transform import elastic_transform2d
[docs]class RandomElasticTransform(GeometricAugmentationBase2D):
r"""Add random elastic transformation to a tensor image.
.. image:: _static/img/RandomElasticTransform.png
Args:
kernel_size: the size of the Gaussian kernel.
sigma: The standard deviation of the Gaussian in the y and x directions,
respectively. Larger sigma results in smaller pixel displacements.
alpha: The scaling factor that controls the intensity of the deformation
in the y and x directions, respectively.
align_corners: Interpolation flag used by `grid_sample`.
mode: Interpolation mode used by `grid_sample`. Either 'bilinear' or 'nearest'.
padding_mode: The padding used by ```grid_sample```. Either 'zeros', 'border' or 'refection'.
same_on_batch: apply the same transformation across the batch.
p: probability of applying the transformation.
keepdim: whether to keep the output shape the same as input (True) or broadcast it
to the batch form (False).
.. note::
This function internally uses :func:`kornia.geometry.transform.elastic_transform2d`.
Examples:
>>> import torch
>>> img = torch.ones(1, 1, 2, 2)
>>> out = RandomElasticTransform()(img)
>>> out.shape
torch.Size([1, 1, 2, 2])
To apply the exact augmenation again, you may take the advantage of the previous parameter state:
>>> input = torch.randn(1, 3, 32, 32)
>>> aug = RandomElasticTransform(p=1.)
>>> (aug(input) == aug(input, params=aug._params)).all()
tensor(True)
"""
def __init__(
self,
kernel_size: Tuple[int, int] = (63, 63),
sigma: Tuple[float, float] = (32.0, 32.0),
alpha: Tuple[float, float] = (1.0, 1.0),
align_corners: bool = False,
mode: str = "bilinear",
padding_mode: str = "zeros",
same_on_batch: bool = False,
p: float = 0.5,
keepdim: bool = False,
return_transform: Optional[bool] = None,
) -> None:
super().__init__(
p=p, return_transform=return_transform, same_on_batch=same_on_batch, p_batch=1.0, keepdim=keepdim
)
self.flags = dict(
kernel_size=kernel_size,
sigma=sigma,
alpha=alpha,
align_corners=align_corners,
mode=mode,
padding_mode=padding_mode,
)
def generate_parameters(self, shape: torch.Size) -> Dict[str, Tensor]:
B, _, H, W = shape
if self.same_on_batch:
noise = torch.rand(1, 2, H, W, device=self.device, dtype=self.dtype).repeat(B, 1, 1, 1)
else:
noise = torch.rand(B, 2, H, W, device=self.device, dtype=self.dtype)
return dict(noise=noise * 2 - 1)
# TODO: It is incorrect to return identity
def compute_transformation(self, input: Tensor, params: Dict[str, Tensor], flags: Dict[str, Any]) -> Tensor:
return self.identity_matrix(input)
def apply_transform(
self, input: Tensor, params: Dict[str, Tensor], flags: Dict[str, Any], transform: Optional[Tensor] = None
) -> Tensor:
return elastic_transform2d(
input,
params["noise"].to(input),
flags["kernel_size"],
flags["sigma"],
flags["alpha"],
flags["align_corners"],
flags["mode"],
flags["padding_mode"],
)