from typing import Any, Dict, Optional, Tuple, Union, cast
import torch
from torch import Tensor
from kornia.augmentation import random_generator as rg
from kornia.augmentation._2d.geometric.base import GeometricAugmentationBase2D
from kornia.constants import Resample
from kornia.geometry.transform import crop_by_indices, crop_by_transform_mat, get_perspective_transform
[docs]class CenterCrop(GeometricAugmentationBase2D):
r"""Crop a given image tensor at the center.
.. image:: _static/img/CenterCrop.png
Args:
size: Desired output size (out_h, out_w) of the crop.
If integer, out_h = out_w = size.
If Tuple[int, int], out_h = size[0], out_w = size[1].
align_corners: interpolation flag.
resample: The interpolation mode.
p: probability of applying the transformation for the whole batch.
keepdim: whether to keep the output shape the same as input (True) or broadcast it
to the batch form (False).
cropping_mode: The used algorithm to crop. ``slice`` will use advanced slicing to extract the tensor based
on the sampled indices. ``resample`` will use `warp_affine` using the affine transformation
to extract and resize at once. Use `slice` for efficiency, or `resample` for proper
differentiability.
Shape:
- Input: :math:`(C, H, W)` or :math:`(B, C, H, W)`, Optional: :math:`(B, 3, 3)`
- Output: :math:`(B, C, out_h, out_w)`
.. note::
This function internally uses :func:`kornia.geometry.transform.crop_by_boxes`.
Examples:
>>> import torch
>>> rng = torch.manual_seed(0)
>>> inputs = torch.randn(1, 1, 4, 4)
>>> inputs
tensor([[[[-1.1258, -1.1524, -0.2506, -0.4339],
[ 0.8487, 0.6920, -0.3160, -2.1152],
[ 0.3223, -1.2633, 0.3500, 0.3081],
[ 0.1198, 1.2377, 1.1168, -0.2473]]]])
>>> aug = CenterCrop(2, p=1., cropping_mode="resample")
>>> out = aug(inputs)
>>> out
tensor([[[[ 0.6920, -0.3160],
[-1.2633, 0.3500]]]])
>>> aug.inverse(out, padding_mode="border")
tensor([[[[ 0.6920, 0.6920, -0.3160, -0.3160],
[ 0.6920, 0.6920, -0.3160, -0.3160],
[-1.2633, -1.2633, 0.3500, 0.3500],
[-1.2633, -1.2633, 0.3500, 0.3500]]]])
To apply the exact augmenation again, you may take the advantage of the previous parameter state:
>>> input = torch.randn(1, 3, 32, 32)
>>> aug = CenterCrop(2, p=1., cropping_mode="resample")
>>> (aug(input) == aug(input, params=aug._params)).all()
tensor(True)
"""
def __init__(
self,
size: Union[int, Tuple[int, int]],
align_corners: bool = True,
resample: Union[str, int, Resample] = Resample.BILINEAR.name,
p: float = 1.0,
keepdim: bool = False,
cropping_mode: str = "slice",
return_transform: Optional[bool] = None,
) -> None:
# same_on_batch is always True for CenterCrop
# Since PyTorch does not support ragged tensor. So cropping function happens batch-wisely.
super().__init__(p=1.0, return_transform=return_transform, same_on_batch=True, p_batch=p, keepdim=keepdim)
if isinstance(size, tuple):
self.size = (size[0], size[1])
elif isinstance(size, int):
self.size = (size, size)
else:
raise Exception(f"Invalid size type. Expected (int, tuple(int, int). " f"Got: {type(size)}.")
self.flags = dict(
resample=Resample.get(resample),
cropping_mode=cropping_mode,
align_corners=align_corners,
size=self.size,
padding_mode="zeros",
)
def generate_parameters(self, batch_shape: torch.Size) -> Dict[str, Tensor]:
return rg.center_crop_generator(batch_shape[0], batch_shape[-2], batch_shape[-1], self.size, self.device)
def compute_transformation(self, input: Tensor, params: Dict[str, Tensor], flags: Dict[str, Any]) -> Tensor:
if flags["cropping_mode"] in ("resample", "slice"):
transform: Tensor = get_perspective_transform(params["src"].to(input), params["dst"].to(input))
transform = transform.expand(input.shape[0], -1, -1)
return transform
raise NotImplementedError(f"Not supported type: {flags['cropping_mode']}.")
def apply_transform(
self, input: Tensor, params: Dict[str, Tensor], flags: Dict[str, Any], transform: Optional[Tensor] = None
) -> Tensor:
if flags["cropping_mode"] == "resample": # uses bilinear interpolation to crop
transform = cast(Tensor, transform)
return crop_by_transform_mat(
input, transform[:, :2, :], self.size, flags["resample"].name.lower(), "zeros", flags["align_corners"]
)
if flags["cropping_mode"] == "slice": # uses advanced slicing to crop
return crop_by_indices(input, params["src"], flags["size"])
raise NotImplementedError(f"Not supported type: {flags['cropping_mode']}.")
def inverse_transform(
self,
input: Tensor,
flags: Dict[str, Any],
transform: Optional[Tensor] = None,
size: Optional[Tuple[int, int]] = None,
) -> Tensor:
if flags["cropping_mode"] != "resample":
raise NotImplementedError(
f"`inverse` is only applicable for resample cropping mode. Got {flags['cropping_mode']}."
)
if size is None:
size = self.size
transform = cast(Tensor, transform)
return crop_by_transform_mat(
input,
transform[:, :2, :],
size,
flags["resample"].name.lower(),
flags["padding_mode"],
flags["align_corners"],
)