Source code for kornia.geometry.epipolar.projection

"""Module for image projections."""
from typing import Tuple, Union

import torch

from kornia.utils import eye_like, vec_like
from kornia.utils._compat import linalg_qr

from .numeric import cross_product_matrix


[docs]def intrinsics_like(focal: float, input: torch.Tensor) -> torch.Tensor: r"""Return a 3x3 instrinsics matrix, with same size as the input. The center of projection will be based in the input image size. Args: focal: the focal length for the camera matrix. input: image tensor that will determine the batch size and image height and width. It is assumed to be a tensor in the shape of :math:`(B, C, H, W)`. Returns: The camera matrix with the shape of :math:`(B, 3, 3)`. """ if len(input.shape) != 4: raise AssertionError(input.shape) if focal <= 0: raise AssertionError(focal) _, _, H, W = input.shape intrinsics = eye_like(3, input) intrinsics[..., 0, 0] *= focal intrinsics[..., 1, 1] *= focal intrinsics[..., 0, 2] += 1.0 * W / 2 intrinsics[..., 1, 2] += 1.0 * H / 2 return intrinsics
[docs]def random_intrinsics(low: Union[float, torch.Tensor], high: Union[float, torch.Tensor]) -> torch.Tensor: r"""Generate a random camera matrix based on a given uniform distribution. Args: low: lower range (inclusive). high: upper range (exclusive). Returns: the random camera matrix with the shape of :math:`(1, 3, 3)`. """ sampler = torch.distributions.Uniform(low, high) fx, fy, cx, cy = (sampler.sample((1,)) for _ in range(4)) zeros, ones = torch.zeros_like(fx), torch.ones_like(fx) camera_matrix: torch.Tensor = torch.cat([fx, zeros, cx, zeros, fy, cy, zeros, zeros, ones]) return camera_matrix.view(1, 3, 3)
[docs]def scale_intrinsics(camera_matrix: torch.Tensor, scale_factor: Union[float, torch.Tensor]) -> torch.Tensor: r"""Scale a camera matrix containing the intrinsics. Applies the scaling factor to the focal length and center of projection. Args: camera_matrix: the camera calibration matrix containing the intrinsic parameters. The expected shape for the tensor is :math:`(B, 3, 3)`. scale_factor: the scaling factor to be applied. Returns: The scaled camera matrix with shame shape as input :math:`(B, 3, 3)`. """ K_scale = camera_matrix.clone() K_scale[..., 0, 0] *= scale_factor K_scale[..., 1, 1] *= scale_factor K_scale[..., 0, 2] *= scale_factor K_scale[..., 1, 2] *= scale_factor return K_scale
[docs]def projection_from_KRt(K: torch.Tensor, R: torch.Tensor, t: torch.Tensor) -> torch.Tensor: r"""Get the projection matrix P from K, R and t. This function estimate the projection matrix by solving the following equation: :math:`P = K * [R|t]`. Args: K: the camera matrix with the instrinsics with shape :math:`(B, 3, 3)`. R: The rotation matrix with shape :math:`(B, 3, 3)`. t: The translation vector with shape :math:`(B, 3, 1)`. Returns: The projection matrix P with shape :math:`(B, 4, 4)`. """ if K.shape[-2:] != (3, 3): raise AssertionError(K.shape) if R.shape[-2:] != (3, 3): raise AssertionError(R.shape) if t.shape[-2:] != (3, 1): raise AssertionError(t.shape) if not len(K.shape) == len(R.shape) == len(t.shape): raise AssertionError Rt: torch.Tensor = torch.cat([R, t], dim=-1) # 3x4 Rt_h = torch.nn.functional.pad(Rt, [0, 0, 0, 1], "constant", 0.0) # 4x4 Rt_h[..., -1, -1] += 1.0 K_h: torch.Tensor = torch.nn.functional.pad(K, [0, 1, 0, 1], "constant", 0.0) # 4x4 K_h[..., -1, -1] += 1.0 return K @ Rt
def KRt_from_projection(P: torch.Tensor, eps: float = 1e-6) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: r"""Decompose the Projection matrix into Camera-Matrix, Rotation Matrix and Translation vector. Args: P: the projection matrix with shape :math:`(B, 3, 4)`. Returns: - The Camera matrix with shape :math:`(B, 3, 3)`. - The Rotation matrix with shape :math:`(B, 3, 3)`. - The Translation vector with shape :math:`(B, 3)`. """ if P.shape[-2:] != (3, 4): raise AssertionError("P must be of shape [B, 3, 4]") if len(P.shape) != 3: raise AssertionError submat_3x3 = P[:, 0:3, 0:3] last_column = P[:, 0:3, 3].unsqueeze(-1) # Trick to turn QR-decomposition into RQ-decomposition reverse = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=P.device, dtype=P.dtype).unsqueeze(0) submat_3x3 = torch.matmul(reverse, submat_3x3).permute(0, 2, 1) ortho_mat, upper_mat = linalg_qr(submat_3x3) ortho_mat = torch.matmul(reverse, ortho_mat.permute(0, 2, 1)) upper_mat = torch.matmul(reverse, torch.matmul(upper_mat.permute(0, 2, 1), reverse)) # Turning the `upper_mat's` diagonal elements to positive. diagonals = torch.diagonal(upper_mat, dim1=-2, dim2=-1) + eps signs = torch.sign(diagonals) signs_mat = torch.diag_embed(signs) K = torch.matmul(upper_mat, signs_mat) R = torch.matmul(signs_mat, ortho_mat) t = torch.matmul(torch.inverse(K), last_column) return K, R, t def depth_from_point(R: torch.Tensor, t: torch.Tensor, X: torch.Tensor) -> torch.Tensor: r"""Return the depth of a point transformed by a rigid transform. Args: R: The rotation matrix with shape :math:`(*, 3, 3)`. t: The translation vector with shape :math:`(*, 3, 1)`. X: The 3d points with shape :math:`(*, 3)`. Returns: The depth value per point with shape :math:`(*, 1)`. """ X_tmp = R @ X.transpose(-2, -1) X_out = X_tmp[..., 2, :] + t[..., 2, :] return X_out # adapted from: # https://github.com/opencv/opencv_contrib/blob/master/modules/sfm/src/fundamental.cpp#L61 # https://github.com/mapillary/OpenSfM/blob/master/opensfm/multiview.py#L14 def _nullspace(A): """Compute the null space of A. Return the smallest singular value and the corresponding vector. """ _, s, vh = torch.svd(A) return s[..., -1], vh[..., -1]
[docs]def projections_from_fundamental(F_mat: torch.Tensor) -> torch.Tensor: r"""Get the projection matrices from the Fundamental Matrix. Args: F_mat: the fundamental matrix with the shape :math:`(B, 3, 3)`. Returns: The projection matrices with shape :math:`(B, 3, 4, 2)`. """ if len(F_mat.shape) != 3: raise AssertionError(F_mat.shape) if F_mat.shape[-2:] != (3, 3): raise AssertionError(F_mat.shape) R1 = eye_like(3, F_mat) # Bx3x3 t1 = vec_like(3, F_mat) # Bx3 Ft_mat = F_mat.transpose(-2, -1) _, e2 = _nullspace(Ft_mat) R2 = cross_product_matrix(e2) @ F_mat # Bx3x3 t2 = e2[..., :, None] # Bx3x1 P1 = torch.cat([R1, t1], dim=-1) # Bx3x4 P2 = torch.cat([R2, t2], dim=-1) # Bx3x4 return torch.stack([P1, P2], dim=-1)