Source code for kornia.utils.draw

from typing import List, Optional, Tuple, Union

import torch
from torch import Tensor

from kornia.core.check import KORNIA_CHECK, KORNIA_CHECK_SHAPE

# TODO: implement width of the line


def draw_point2d(image: Tensor, points: Tensor, color: Tensor) -> Tensor:
    r"""Sets one or more coordinates in a Tensor to a color.

    Args:
        image: the input image on which to draw the points with shape :math`(C,H,W)` or :math`(H,W)`.
        points: the [x, y] points to be drawn on the image.
        color: the color of the pixel with :math`(C)` where :math`C` is the number of channels of the image.

    Return:
        The image with points set to the color.
    """
    KORNIA_CHECK(
        (len(image.shape) == 2 and len(color.shape) == 1) or (image.shape[0] == color.shape[0]),
        "Color dim must match the channel dims of the provided image",
    )
    points = points.to(dtype=torch.int64, device=image.device)
    x, y = zip(*points)
    if len(color.shape) == 1:
        color = torch.unsqueeze(color, dim=1)
    color = color.to(dtype=image.dtype, device=image.device)
    if len(image.shape) == 2:
        image[y, x] = color
    else:
        image[:, y, x] = color
    return image


def _draw_pixel(image: torch.Tensor, x: int, y: int, color: torch.Tensor) -> None:
    r"""Draws a pixel into an image.

    Args:
        image: the input image to where to draw the lines with shape :math`(C,H,W)`.
        x: the x coordinate of the pixel.
        y: the y coordinate of the pixel.
        color: the color of the pixel with :math`(C)` where :math`C` is the number of channels of the image.

    Return:
        Nothing is returned.
    """
    image[:, y, x] = color


[docs]def draw_line(image: torch.Tensor, p1: torch.Tensor, p2: torch.Tensor, color: torch.Tensor) -> torch.Tensor: r"""Draw a single line into an image. Args: image: the input image to where to draw the lines with shape :math`(C,H,W)`. p1: the start point [x y] of the line with shape (2, ) or (B, 2). p2: the end point [x y] of the line with shape (2, ) or (B, 2). color: the color of the line with shape :math`(C)` where :math`C` is the number of channels of the image. Return: the image with containing the line. Examples: >>> image = torch.zeros(1, 8, 8) >>> draw_line(image, torch.tensor([6, 4]), torch.tensor([1, 4]), torch.tensor([255])) tensor([[[ 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 255., 255., 255., 255., 255., 255., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0.]]]) """ if (p1.shape[0] != p2.shape[0]) or (p1.shape[-1] != 2 or p2.shape[-1] != 2): raise ValueError( "Input points must be 2D points with shape (2, ) or (B, 2) and must have the same batch sizes." ) if ( (p1[..., 0] < 0).any() or (p1[..., 0] >= image.shape[-1]).any() or (p1[..., 1] < 0).any() or (p1[..., 1] >= image.shape[-2]).any() ): raise ValueError("p1 is out of bounds.") if ( (p2[..., 0] < 0).any() or (p2[..., 0] >= image.shape[-1]).any() or (p2[..., 1] < 0).any() or (p2[..., 1] >= image.shape[-2]).any() ): raise ValueError("p2 is out of bounds.") if len(image.size()) != 3: raise ValueError("image must have 3 dimensions (C,H,W).") if color.size(0) != image.size(0): raise ValueError("color must have the same number of channels as the image.") # move p1 and p2 to the same device as the input image # move color to the same device and dtype as the input image p1 = p1.to(image.device).to(torch.int64) p2 = p2.to(image.device).to(torch.int64) color = color.to(image) x1, y1 = p1[..., 0], p1[..., 1] x2, y2 = p2[..., 0], p2[..., 1] dx = x2 - x1 dy = y2 - y1 dx_sign = torch.sign(dx) dy_sign = torch.sign(dy) dx, dy = torch.abs(dx), torch.abs(dy) dx_zero_mask = dx == 0 dy_zero_mask = dy == 0 dx_gt_dy_mask = (dx > dy) & ~(dx_zero_mask | dy_zero_mask) rest_mask = ~(dx_zero_mask | dy_zero_mask | dx_gt_dy_mask) dx_zero_x_coords, dx_zero_y_coords = [], [] dy_zero_x_coords, dy_zero_y_coords = [], [] dx_gt_dy_x_coords, dx_gt_dy_y_coords = [], [] rest_x_coords, rest_y_coords = [], [] if dx_zero_mask.any(): dx_zero_x_coords = [ x for x_i, dy_i in zip(x1[dx_zero_mask], dy[dx_zero_mask]) for x in x_i.repeat(int(dy_i.item() + 1)) ] dx_zero_y_coords = [ y for y_i, s, dy_ in zip(y1[dx_zero_mask], dy_sign[dx_zero_mask], dy[dx_zero_mask]) for y in (y_i + s * torch.arange(0, dy_ + 1, 1, device=image.device)) ] if dy_zero_mask.any(): dy_zero_x_coords = [ x for x_i, s, dx_i in zip(x1[dy_zero_mask], dx_sign[dy_zero_mask], dx[dy_zero_mask]) for x in (x_i + s * torch.arange(0, dx_i + 1, 1, device=image.device)) ] dy_zero_y_coords = [ y for y_i, dx_i in zip(y1[dy_zero_mask], dx[dy_zero_mask]) for y in y_i.repeat(int(dx_i.item() + 1)) ] if dx_gt_dy_mask.any(): dx_gt_dy_x_coords = [ x for x_i, s, dx_i in zip(x1[dx_gt_dy_mask], dx_sign[dx_gt_dy_mask], dx[dx_gt_dy_mask]) for x in (x_i + s * torch.arange(0, dx_i + 1, 1, device=image.device)) ] dx_gt_dy_y_coords = [ y for y_i, s, dx_i, dy_i in zip( y1[dx_gt_dy_mask], dy_sign[dx_gt_dy_mask], dx[dx_gt_dy_mask], dy[dx_gt_dy_mask] ) for y in ( y_i + s * torch.arange(0, dy_i + 1, dy_i / dx_i, device=image.device)[: int(dx_i.item()) + 1].ceil() ) ] if rest_mask.any(): rest_x_coords = [ x for x_i, s, dx_i, dy_ in zip(x1[rest_mask], dx_sign[rest_mask], dx[rest_mask], dy[rest_mask]) for x in ( x_i + s * torch.arange(0, dx_i + 1, dx_i / dy_, device=image.device)[: int(dy_.item()) + 1].ceil() ) ] rest_y_coords = [ y for y_i, s, dy_i in zip(y1[rest_mask], dy_sign[rest_mask], dy[rest_mask]) for y in (y_i + s * torch.arange(0, dy_i + 1, 1, device=image.device)) ] x_coords = torch.tensor(dx_zero_x_coords + dy_zero_x_coords + dx_gt_dy_x_coords + rest_x_coords).long() y_coords = torch.tensor(dx_zero_y_coords + dy_zero_y_coords + dx_gt_dy_y_coords + rest_y_coords).long() image[:, y_coords, x_coords] = color.view(-1, 1) return image
[docs]def draw_rectangle( image: torch.Tensor, rectangle: torch.Tensor, color: Optional[torch.Tensor] = None, fill: Optional[bool] = None ) -> torch.Tensor: r"""Draw N rectangles on a batch of image tensors. Args: image: is tensor of BxCxHxW. rectangle: represents number of rectangles to draw in BxNx4 N is the number of boxes to draw per batch index[x1, y1, x2, y2] 4 is in (top_left.x, top_left.y, bot_right.x, bot_right.y). color: a size 1, size 3, BxNx1, or BxNx3 tensor. If C is 3, and color is 1 channel it will be broadcasted. fill: is a flag used to fill the boxes with color if True. Returns: This operation modifies image inplace but also returns the drawn tensor for convenience with same shape the of the input BxCxHxW. Example: >>> img = torch.rand(2, 3, 10, 12) >>> rect = torch.tensor([[[0, 0, 4, 4]], [[4, 4, 10, 10]]]) >>> out = draw_rectangle(img, rect) """ batch, c, h, w = image.shape batch_rect, num_rectangle, num_points = rectangle.shape if batch != batch_rect: raise AssertionError("Image batch and rectangle batch must be equal") if num_points != 4: raise AssertionError("Number of points in rectangle must be 4") # clone rectangle, in case it's been expanded assignment from clipping causes problems rectangle = rectangle.long().clone() # clip rectangle to hxw bounds rectangle[:, :, 1::2] = torch.clamp(rectangle[:, :, 1::2], 0, h - 1) rectangle[:, :, ::2] = torch.clamp(rectangle[:, :, ::2], 0, w - 1) if color is None: color = torch.tensor([0.0] * c).expand(batch, num_rectangle, c) if fill is None: fill = False if len(color.shape) == 1: color = color.expand(batch, num_rectangle, c) b, n, color_channels = color.shape if color_channels == 1 and c == 3: color = color.expand(batch, num_rectangle, c) for b in range(batch): for n in range(num_rectangle): if fill: image[ b, :, int(rectangle[b, n, 1]) : int(rectangle[b, n, 3] + 1), int(rectangle[b, n, 0]) : int(rectangle[b, n, 2] + 1), ] = color[b, n, :, None, None] else: image[b, :, int(rectangle[b, n, 1]) : int(rectangle[b, n, 3] + 1), rectangle[b, n, 0]] = color[ b, n, :, None ] image[b, :, int(rectangle[b, n, 1]) : int(rectangle[b, n, 3] + 1), rectangle[b, n, 2]] = color[ b, n, :, None ] image[b, :, rectangle[b, n, 1], int(rectangle[b, n, 0]) : int(rectangle[b, n, 2] + 1)] = color[ b, n, :, None ] image[b, :, rectangle[b, n, 3], int(rectangle[b, n, 0]) : int(rectangle[b, n, 2] + 1)] = color[ b, n, :, None ] return image
def _get_convex_edges(polygon: Tensor, h: int, w: int) -> Tuple[Tensor, Tensor]: r"""Gets the left and right edges of a polygon for each y-coordinate y \in [0, h) Args: polygons: represents polygons to draw in BxNx2 N is the number of points 2 is (x, y). h: bottom most coordinate (top coordinate is assumed to be 0) w: right most coordinate (left coordinate is assumed to be 0) Returns: The left and right edges of the polygon of shape (B,B). """ dtype = polygon.dtype # Check if polygons are in loop closed format, if not -> make it so if not torch.allclose(polygon[..., -1, :], polygon[..., 0, :]): polygon = torch.cat((polygon, polygon[..., :1, :]), dim=-2) # (B, N+1, 2) # Partition points into edges x_start, y_start = polygon[..., :-1, 0], polygon[..., :-1, 1] x_end, y_end = polygon[..., 1:, 0], polygon[..., 1:, 1] # Create scanlines, edge dx/dy, and produce x values ys = torch.arange(h, device=polygon.device, dtype=dtype) dx = ((x_end - x_start) / (y_end - y_start + 1e-12)).clamp(-w, w) xs = (ys[..., :, None] - y_start[..., None, :]) * dx[..., None, :] + x_start[..., None, :] # Only count edge in their active regions (i.e between the vertices) valid_edges = (y_start[..., None, :] <= ys[..., :, None]).logical_and(ys[..., :, None] <= y_end[..., None, :]) valid_edges |= (y_start[..., None, :] >= ys[..., :, None]).logical_and(ys[..., :, None] >= y_end[..., None, :]) x_left_edges = xs.clone() x_left_edges[~valid_edges] = w x_right_edges = xs.clone() x_right_edges[~valid_edges] = -1 # Find smallest and largest x values for the valid edges x_left = x_left_edges.min(dim=-1).values x_right = x_right_edges.max(dim=-1).values return x_left, x_right def _batch_polygons(polygons: List[Tensor]) -> Tensor: r"""Converts a List of variable length polygons into a fixed size tensor. Works by repeating the last element in the tensor. Args: polygon: List of variable length polygons of shape [N_1 x 2, N_2 x 2, ..., N_B x 2]. B is the batch size, N_i is the number of points, 2 is (x, y). Returns: A fixed size tensor of shape (B, N, 2) where N = max_i(N_i) """ B, N = len(polygons), len(max(polygons, key=len)) batched_polygons = torch.zeros(B, N, 2, dtype=polygons[0].dtype, device=polygons[0].device) for b, p in enumerate(polygons): batched_polygons[b] = torch.cat((p, p[-1:].expand(N - len(p), 2))) if len(p) < N else p return batched_polygons
[docs]def draw_convex_polygon(images: Tensor, polygons: Union[Tensor, List[Tensor]], colors: Tensor) -> Tensor: r"""Draws convex polygons on a batch of image tensors. Args: images: is tensor of BxCxHxW. polygons: represents polygons as points, either BxNx2 or List of variable length polygons. N is the number of points. 2 is (x, y). color: a B x 3 tensor or 3 tensor with color to fill in. Returns: This operation modifies image inplace but also returns the drawn tensor for convenience with same shape the of the input BxCxHxW. Note: This function assumes a coordinate system (0, h - 1), (0, w - 1) in the image, with (0, 0) being the center of the top-left pixel and (w - 1, h - 1) being the center of the bottom-right coordinate. Example: >>> img = torch.rand(1, 3, 12, 16) >>> poly = torch.tensor([[[4, 4], [12, 4], [12, 8], [4, 8]]]) >>> color = torch.tensor([[0.5, 0.5, 0.5]]) >>> out = draw_convex_polygon(img, poly, color) """ # TODO: implement optional linetypes for smooth edges KORNIA_CHECK_SHAPE(images, ["B", "C", "H", "W"]) b_i, c_i, h_i, w_i, device = *images.shape, images.device if isinstance(polygons, List): polygons = _batch_polygons(polygons) b_p, _, xy, device_p, dtype_p = *polygons.shape, polygons.device, polygons.dtype if len(colors.shape) == 1: colors = colors.expand(b_i, c_i) b_c, _, device_c = *colors.shape, colors.device KORNIA_CHECK(xy == 2, "Polygon vertices must be xy, i.e. 2-dimensional") KORNIA_CHECK(b_i == b_p == b_c, "Image, polygon, and color must have same batch dimension") KORNIA_CHECK(device == device_p == device_c, "Image, polygon, and color must have same device") x_left, x_right = _get_convex_edges(polygons, h_i, w_i) ws = torch.arange(w_i, device=device, dtype=dtype_p)[None, None, :] fill_region = (ws >= x_left[..., :, None]) & (ws <= x_right[..., :, None]) images = (~fill_region[:, None]) * images + fill_region[:, None] * colors[..., None, None] return images