Source code for kornia.metrics.ssim

from typing import List

import torch
from torch import nn

from kornia.filters import filter2d_separable, get_gaussian_kernel1d
from kornia.filters.filter import _compute_padding


def _crop(img: torch.Tensor, cropping_shape: List[int]) -> torch.Tensor:
    """Crop out the part of "valid" convolution area."""
    return torch.nn.functional.pad(
        img, (-cropping_shape[2], -cropping_shape[3], -cropping_shape[0], -cropping_shape[1])
    )


[docs]def ssim( img1: torch.Tensor, img2: torch.Tensor, window_size: int, max_val: float = 1.0, eps: float = 1e-12, padding: str = 'same', ) -> torch.Tensor: r"""Function that computes the Structural Similarity (SSIM) index map between two images. Measures the (SSIM) index between each element in the input `x` and target `y`. The index can be described as: .. math:: \text{SSIM}(x, y) = \frac{(2\mu_x\mu_y+c_1)(2\sigma_{xy}+c_2)} {(\mu_x^2+\mu_y^2+c_1)(\sigma_x^2+\sigma_y^2+c_2)} where: - :math:`c_1=(k_1 L)^2` and :math:`c_2=(k_2 L)^2` are two variables to stabilize the division with weak denominator. - :math:`L` is the dynamic range of the pixel-values (typically this is :math:`2^{\#\text{bits per pixel}}-1`). Args: img1: the first input image with shape :math:`(B, C, H, W)`. img2: the second input image with shape :math:`(B, C, H, W)`. window_size: the size of the gaussian kernel to smooth the images. max_val: the dynamic range of the images. eps: Small value for numerically stability when dividing. padding: ``'same'`` | ``'valid'``. Whether to only use the "valid" convolution area to compute SSIM to match the MATLAB implementation of original SSIM paper. Returns: The ssim index map with shape :math:`(B, C, H, W)`. Examples: >>> input1 = torch.rand(1, 4, 5, 5) >>> input2 = torch.rand(1, 4, 5, 5) >>> ssim_map = ssim(input1, input2, 5) # 1x4x5x5 """ if not isinstance(img1, torch.Tensor): raise TypeError(f"Input img1 type is not a torch.Tensor. Got {type(img1)}") if not isinstance(img2, torch.Tensor): raise TypeError(f"Input img2 type is not a torch.Tensor. Got {type(img2)}") if not isinstance(max_val, float): raise TypeError(f"Input max_val type is not a float. Got {type(max_val)}") if not len(img1.shape) == 4: raise ValueError(f"Invalid img1 shape, we expect BxCxHxW. Got: {img1.shape}") if not len(img2.shape) == 4: raise ValueError(f"Invalid img2 shape, we expect BxCxHxW. Got: {img2.shape}") if not img1.shape == img2.shape: raise ValueError(f"img1 and img2 shapes must be the same. Got: {img1.shape} and {img2.shape}") # prepare kernel kernel: torch.Tensor = get_gaussian_kernel1d(window_size, 1.5, device=img1.device, dtype=img1.dtype) # compute coefficients C1: float = (0.01 * max_val) ** 2 C2: float = (0.03 * max_val) ** 2 # compute local mean per channel mu1: torch.Tensor = filter2d_separable(img1, kernel, kernel) mu2: torch.Tensor = filter2d_separable(img2, kernel, kernel) cropping_shape: List[int] = [] if padding == 'valid': height = width = kernel.shape[-1] cropping_shape = _compute_padding([height, width]) mu1 = _crop(mu1, cropping_shape) mu2 = _crop(mu2, cropping_shape) elif padding == 'same': pass mu1_sq = mu1**2 mu2_sq = mu2**2 mu1_mu2 = mu1 * mu2 mu_img1_sq = filter2d_separable(img1**2, kernel, kernel) mu_img2_sq = filter2d_separable(img2**2, kernel, kernel) mu_img1_img2 = filter2d_separable(img1 * img2, kernel, kernel) if padding == 'valid': mu_img1_sq = _crop(mu_img1_sq, cropping_shape) mu_img2_sq = _crop(mu_img2_sq, cropping_shape) mu_img1_img2 = _crop(mu_img1_img2, cropping_shape) elif padding == 'same': pass # compute local sigma per channel sigma1_sq = mu_img1_sq - mu1_sq sigma2_sq = mu_img2_sq - mu2_sq sigma12 = mu_img1_img2 - mu1_mu2 # compute the similarity index map num: torch.Tensor = (2.0 * mu1_mu2 + C1) * (2.0 * sigma12 + C2) den: torch.Tensor = (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2) return num / (den + eps)
[docs]class SSIM(nn.Module): r"""Create a module that computes the Structural Similarity (SSIM) index between two images. Measures the (SSIM) index between each element in the input `x` and target `y`. The index can be described as: .. math:: \text{SSIM}(x, y) = \frac{(2\mu_x\mu_y+c_1)(2\sigma_{xy}+c_2)} {(\mu_x^2+\mu_y^2+c_1)(\sigma_x^2+\sigma_y^2+c_2)} where: - :math:`c_1=(k_1 L)^2` and :math:`c_2=(k_2 L)^2` are two variables to stabilize the division with weak denominator. - :math:`L` is the dynamic range of the pixel-values (typically this is :math:`2^{\#\text{bits per pixel}}-1`). Args: window_size: the size of the gaussian kernel to smooth the images. max_val: the dynamic range of the images. eps: Small value for numerically stability when dividing. padding: ``'same'`` | ``'valid'``. Whether to only use the "valid" convolution area to compute SSIM to match the MATLAB implementation of original SSIM paper. Shape: - Input: :math:`(B, C, H, W)`. - Target :math:`(B, C, H, W)`. - Output: :math:`(B, C, H, W)`. Examples: >>> input1 = torch.rand(1, 4, 5, 5) >>> input2 = torch.rand(1, 4, 5, 5) >>> ssim = SSIM(5) >>> ssim_map = ssim(input1, input2) # 1x4x5x5 """ def __init__(self, window_size: int, max_val: float = 1.0, eps: float = 1e-12, padding: str = 'same') -> None: super().__init__() self.window_size: int = window_size self.max_val: float = max_val self.eps = eps self.padding = padding def forward(self, img1: torch.Tensor, img2: torch.Tensor) -> torch.Tensor: return ssim(img1, img2, self.window_size, self.max_val, self.eps, self.padding)