Source code for kornia.geometry.liegroup.se3

# kornia.geometry.so3 module inspired by Sophus-sympy.
# https://github.com/strasdat/Sophus/blob/master/sympy/sophus/se3.py
from __future__ import annotations

from kornia.core import (
    Device,
    Dtype,
    Module,
    Parameter,
    Tensor,
    concatenate,
    eye,
    pad,
    stack,
    tensor,
    where,
    zeros_like,
)
from kornia.core.check import KORNIA_CHECK, KORNIA_CHECK_SAME_DEVICES
from kornia.geometry.liegroup.so3 import So3
from kornia.geometry.linalg import batched_dot_product
from kornia.geometry.quaternion import Quaternion
from kornia.geometry.vector import Vector3


[docs]class Se3(Module): r"""Base class to represent the Se3 group. The SE(3) is the group of rigid body transformations about the origin of three-dimensional Euclidean space :math:`R^3` under the operation of composition. See more: https://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf Example: >>> q = Quaternion.identity() >>> s = Se3(q, torch.ones(3)) >>> s.r Parameter containing: tensor([1., 0., 0., 0.], requires_grad=True) >>> s.t Parameter containing: tensor([1., 1., 1.], requires_grad=True) """
[docs] def __init__(self, rotation: Quaternion | So3, translation: Vector3 | Tensor) -> None: """Constructor for the base class. Internally represented by a unit quaternion `q` and a translation 3-vector. Args: rotation: So3 group encompassing a rotation. translation: Vector3 or translation tensor with the shape of :math:`(B, 3)`. Example: >>> from kornia.geometry.quaternion import Quaternion >>> q = Quaternion.identity(batch_size=1) >>> s = Se3(q, torch.ones((1, 3))) >>> s.r Parameter containing: tensor([[1., 0., 0., 0.]], requires_grad=True) >>> s.t Parameter containing: tensor([[1., 1., 1.]], requires_grad=True) """ super().__init__() # KORNIA_CHECK_TYPE(rotation, (Quaternion, So3)) if not isinstance(rotation, (Quaternion, So3)): raise TypeError(f"rotation type is {type(rotation)}") # KORNIA_CHECK_TYPE(translation, (Vector3, Tensor)) if not isinstance(translation, (Vector3, Tensor)): raise TypeError(f"translation type is {type(translation)}") # KORNIA_CHECK_SHAPE(t, ["B", "3"]) # FIXME: resolve shape bugs. @edgarriba self._translation: Vector3 | Parameter self._rotation: So3 if isinstance(translation, Tensor): self._translation = Parameter(translation) else: self._translation = translation if isinstance(rotation, Quaternion): self._rotation = So3(rotation) else: self._rotation = rotation
[docs] def __repr__(self) -> str: return f"rotation: {self.r}\ntranslation: {self.t}"
def __getitem__(self, idx: int | slice) -> Se3: return Se3(self._rotation[idx], self._translation[idx])
[docs] def __mul__(self, right: Se3) -> Se3 | Vector3 | Tensor: """Compose two Se3 transformations. Args: right: the other Se3 transformation. Return: The resulting Se3 transformation. """ so3 = self.so3 t = self.t if isinstance(right, Se3): # https://github.com/strasdat/Sophus/blob/master/sympy/sophus/se3.py#L97 _r = so3 * right.so3 _t = t + so3 * right.t return Se3(_r, _t) elif isinstance(right, (Vector3, Tensor)): # KORNIA_CHECK_SHAPE(right, ["B", "N"]) # FIXME: resolve shape bugs. @edgarriba return so3 * right + t.data else: raise TypeError(f"Unsupported type: {type(right)}")
@property def so3(self) -> So3: """Return the underlying rotation(So3).""" return self._rotation @property def quaternion(self) -> Quaternion: """Return the underlying rotation(Quaternion).""" return self._rotation.q @property def r(self) -> So3: """Return the underlying rotation(So3).""" return self._rotation @property def t(self) -> Vector3 | Tensor: """Return the underlying translation vector of shape :math:`(B,3)`.""" return self._translation @property def rotation(self) -> So3: """Return the underlying rotation(So3).""" return self._rotation @property def translation(self) -> Vector3 | Tensor: """Return the underlying translation vector of shape :math:`(B,3)`.""" return self._translation
[docs] @staticmethod def exp(v: Tensor) -> Se3: """Converts elements of lie algebra to elements of lie group. Args: v: vector of shape :math:`(B, 6)`. Example: >>> v = torch.zeros((1, 6)) >>> s = Se3.exp(v) >>> s.r Parameter containing: tensor([[1., 0., 0., 0.]], requires_grad=True) >>> s.t Parameter containing: tensor([[0., 0., 0.]], requires_grad=True) """ # KORNIA_CHECK_SHAPE(v, ["B", "6"]) # FIXME: resolve shape bugs. @edgarriba upsilon = v[..., :3] omega = v[..., 3:] omega_hat = So3.hat(omega) omega_hat_sq = omega_hat @ omega_hat theta = batched_dot_product(omega, omega).sqrt() R = So3.exp(omega) V = ( eye(3, device=v.device, dtype=v.dtype) + ((1 - theta.cos()) / (theta**2))[..., None, None] * omega_hat + ((theta - theta.sin()) / (theta**3))[..., None, None] * omega_hat_sq ) U = where(theta[..., None] != 0.0, (upsilon[..., None, :] * V).sum(-1), upsilon) return Se3(R, U)
[docs] def log(self) -> Tensor: """Converts elements of lie group to elements of lie algebra. Example: >>> from kornia.geometry.quaternion import Quaternion >>> q = Quaternion.identity() >>> Se3(q, torch.zeros(3)).log() tensor([0., 0., 0., 0., 0., 0.], grad_fn=<CatBackward0>) """ omega = self.r.log() theta = batched_dot_product(omega, omega).sqrt() t = self.t.data omega_hat = So3.hat(omega) omega_hat_sq = omega_hat @ omega_hat V_inv = ( eye(3, device=omega.device, dtype=omega.dtype) - 0.5 * omega_hat + ((1 - theta * (theta / 2).cos() / (2 * (theta / 2).sin())) / theta.pow(2))[..., None, None] * omega_hat_sq ) t = where(theta[..., None] != 0.0, (t[..., None, :] * V_inv).sum(-1), t) return concatenate((t, omega), -1)
[docs] @staticmethod def hat(v: Tensor) -> Tensor: """Converts elements from vector space to lie algebra. Args: v: vector of shape :math:`(B, 6)`. Returns: matrix of shape :math:`(B, 4, 4)`. Example: >>> v = torch.ones((1, 6)) >>> m = Se3.hat(v) >>> m tensor([[[ 0., -1., 1., 1.], [ 1., 0., -1., 1.], [-1., 1., 0., 1.], [ 0., 0., 0., 0.]]]) """ # KORNIA_CHECK_SHAPE(v, ["B", "6"]) # FIXME: resolve shape bugs. @edgarriba upsilon, omega = v[..., :3], v[..., 3:] rt = concatenate((So3.hat(omega), upsilon[..., None]), -1) return pad(rt, (0, 0, 0, 1)) # add zeros bottom
[docs] @staticmethod def vee(omega: Tensor) -> Tensor: """Converts elements from lie algebra to vector space. Args: omega: 4x4-matrix representing lie algebra of shape :math:`(B,4,4)`. Returns: vector of shape :math:`(B,6)`. Example: >>> v = torch.ones((1, 6)) >>> omega_hat = Se3.hat(v) >>> Se3.vee(omega_hat) tensor([[1., 1., 1., 1., 1., 1.]]) """ # KORNIA_CHECK_SHAPE(omega, ["B", "4", "4"]) # FIXME: resolve shape bugs. @edgarriba head = omega[..., :3, -1] tail = So3.vee(omega[..., :3, :3]) return concatenate((head, tail), -1)
[docs] @classmethod def identity(cls, batch_size: int | None = None, device: Device | None = None, dtype: Dtype = None) -> Se3: """Create a Se3 group representing an identity rotation and zero translation. Args: batch_size: the batch size of the underlying data. Example: >>> s = Se3.identity() >>> s.r Parameter containing: tensor([1., 0., 0., 0.], requires_grad=True) >>> s.t x: 0.0 y: 0.0 z: 0.0 """ t = tensor([0.0, 0.0, 0.0], device=device, dtype=dtype) if batch_size is not None: t = t.repeat(batch_size, 1) return cls(So3.identity(batch_size, device, dtype), Vector3(t))
[docs] def matrix(self) -> Tensor: """Returns the matrix representation of shape :math:`(B, 4, 4)`. Example: >>> s = Se3(So3.identity(), torch.ones(3)) >>> s.matrix() tensor([[1., 0., 0., 1.], [0., 1., 0., 1.], [0., 0., 1., 1.], [0., 0., 0., 1.]], grad_fn=<CopySlices>) """ rt = concatenate((self.r.matrix(), self.t.data[..., None]), -1) rt_4x4 = pad(rt, (0, 0, 0, 1)) # add last row zeros rt_4x4[..., -1, -1] = 1.0 return rt_4x4
[docs] @classmethod def from_matrix(cls, matrix: Tensor) -> Se3: """Create a Se3 group from a matrix. Args: matrix: tensor of shape :math:`(B, 4, 4)`. Example: >>> s = Se3.from_matrix(torch.eye(4)) >>> s.r Parameter containing: tensor([1., 0., 0., 0.], requires_grad=True) >>> s.t Parameter containing: tensor([0., 0., 0.], requires_grad=True) """ # KORNIA_CHECK_SHAPE(matrix, ["B", "4", "4"]) # FIXME: resolve shape bugs. @edgarriba r = So3.from_matrix(matrix[..., :3, :3]) t = matrix[..., :3, -1] return cls(r, t)
[docs] @classmethod def from_qxyz(cls, qxyz: Tensor) -> Se3: """Create a Se3 group a quaternion and translation vector. Args: qxyz: tensor of shape :math:`(B, 7)`. Example: >>> qxyz = torch.tensor([1., 2., 3., 0., 0., 0., 1.]) >>> s = Se3.from_qxyz(qxyz) >>> s.r Parameter containing: tensor([1., 2., 3., 0.], requires_grad=True) >>> s.t x: 0.0 y: 0.0 z: 1.0 """ # KORNIA_CHECK_SHAPE(qxyz, ["B", "7"]) # FIXME: resolve shape bugs. @edgarriba q, xyz = qxyz[..., :4], qxyz[..., 4:] return cls(So3.from_wxyz(q), Vector3(xyz))
[docs] def inverse(self) -> Se3: """Returns the inverse transformation. Example: >>> s = Se3(So3.identity(), torch.ones(3)) >>> s_inv = s.inverse() >>> s_inv.r Parameter containing: tensor([1., -0., -0., -0.], requires_grad=True) >>> s_inv.t Parameter containing: tensor([-1., -1., -1.], requires_grad=True) """ r_inv = self.r.inverse() _t = -1 * self.t if isinstance(_t, int): raise TypeError('Unexpected integer from `-1 * translation`') return Se3(r_inv, r_inv * _t)
[docs] @classmethod def random(cls, batch_size: int | None = None, device: Device | None = None, dtype: Dtype = None) -> Se3: """Create a Se3 group representing a random transformation. Args: batch_size: the batch size of the underlying data. Example: >>> s = Se3.random() >>> s = Se3.random(batch_size=3) """ shape: tuple[int, ...] if batch_size is None: shape = () else: KORNIA_CHECK(batch_size >= 1, msg="batch_size must be positive") shape = (batch_size,) r = So3.random(batch_size, device, dtype) t = Vector3.random(shape, device, dtype) return cls(r, t)
[docs] @classmethod def rot_x(cls, x: Tensor) -> Se3: """Construct a x-axis rotation. Args: x: the x-axis rotation angle. """ zs = zeros_like(x) return cls(So3.rot_x(x), stack((zs, zs, zs), -1))
[docs] @classmethod def rot_y(cls, y: Tensor) -> Se3: """Construct a y-axis rotation. Args: y: the y-axis rotation angle. """ zs = zeros_like(y) return cls(So3.rot_y(y), stack((zs, zs, zs), -1))
[docs] @classmethod def rot_z(cls, z: Tensor) -> Se3: """Construct a z-axis rotation. Args: z: the z-axis rotation angle. """ zs = zeros_like(z) return cls(So3.rot_z(z), stack((zs, zs, zs), -1))
[docs] @classmethod def trans(cls, x: Tensor, y: Tensor, z: Tensor) -> Se3: """Construct a translation only Se3 instance. Args: x: the x-axis translation. y: the y-axis translation. z: the z-axis translation. """ KORNIA_CHECK(x.shape == y.shape) KORNIA_CHECK(y.shape == z.shape) KORNIA_CHECK_SAME_DEVICES([x, y, z]) batch_size = x.shape[0] if len(x.shape) > 0 else None rotation = So3.identity(batch_size, x.device, x.dtype) return cls(rotation, stack((x, y, z), -1))
[docs] @classmethod def trans_x(cls, x: Tensor) -> Se3: """Construct a x-axis translation. Args: x: the x-axis translation. """ zs = zeros_like(x) return cls.trans(x, zs, zs)
[docs] @classmethod def trans_y(cls, y: Tensor) -> Se3: """Construct a y-axis translation. Args: y: the y-axis translation. """ zs = zeros_like(y) return cls.trans(zs, y, zs)
[docs] @classmethod def trans_z(cls, z: Tensor) -> Se3: """Construct a z-axis translation. Args: z: the z-axis translation. """ zs = zeros_like(z) return cls.trans(zs, zs, z)
[docs] def adjoint(self) -> Tensor: """Returns the adjoint matrix of shape :math:`(B, 6, 6)`. Example: >>> s = Se3.identity() >>> s.adjoint() tensor([[1., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 1.]], grad_fn=<CatBackward0>) """ R = self.so3.matrix() z = zeros_like(R) row0 = concatenate((R, So3.hat(self.t) @ R), -1) row1 = concatenate((z, R), -1) return concatenate((row0, row1), -2)