Source code for kornia.filters.gaussian

from __future__ import annotations

from typing import Any

from kornia.core import Module, Tensor, tensor
from kornia.core.check import KORNIA_CHECK_IS_TENSOR
from kornia.utils import deprecated

from .filter import filter2d, filter2d_separable
from .kernels import _unpack_2d_ks, get_gaussian_kernel1d, get_gaussian_kernel2d


[docs]def gaussian_blur2d( input: Tensor, kernel_size: tuple[int, int] | int, sigma: tuple[float, float] | Tensor, border_type: str = 'reflect', separable: bool = True, ) -> Tensor: r"""Create an operator that blurs a tensor using a Gaussian filter. .. image:: _static/img/gaussian_blur2d.png The operator smooths the given tensor with a gaussian kernel by convolving it to each channel. It supports batched operation. Arguments: input: the input tensor with shape :math:`(B,C,H,W)`. kernel_size: the size of the kernel. sigma: the standard deviation of the kernel. border_type: the padding mode to be applied before convolving. The expected modes are: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'reflect'``. separable: run as composition of two 1d-convolutions. Returns: the blurred tensor with shape :math:`(B, C, H, W)`. .. note:: See a working example `here <https://kornia.github.io/tutorials/nbs/gaussian_blur.html>`__. Examples: >>> input = torch.rand(2, 4, 5, 5) >>> output = gaussian_blur2d(input, (3, 3), (1.5, 1.5)) >>> output.shape torch.Size([2, 4, 5, 5]) >>> output = gaussian_blur2d(input, (3, 3), torch.tensor([[1.5, 1.5]])) >>> output.shape torch.Size([2, 4, 5, 5]) """ KORNIA_CHECK_IS_TENSOR(input) if isinstance(sigma, tuple): sigma = tensor([sigma], device=input.device, dtype=input.dtype) else: KORNIA_CHECK_IS_TENSOR(sigma) sigma = sigma.to(device=input.device, dtype=input.dtype) if separable: ky, kx = _unpack_2d_ks(kernel_size) bs = sigma.shape[0] kernel_x = get_gaussian_kernel1d(kx, sigma[:, 1].view(bs, 1)) kernel_y = get_gaussian_kernel1d(ky, sigma[:, 0].view(bs, 1)) out = filter2d_separable(input, kernel_x, kernel_y, border_type) else: kernel = get_gaussian_kernel2d(kernel_size, sigma) out = filter2d(input, kernel, border_type) return out
[docs]class GaussianBlur2d(Module): r"""Create an operator that blurs a tensor using a Gaussian filter. The operator smooths the given tensor with a gaussian kernel by convolving it to each channel. It supports batched operation. Arguments: kernel_size: the size of the kernel. sigma: the standard deviation of the kernel. border_type: the padding mode to be applied before convolving. The expected modes are: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'reflect'``. separable: run as composition of two 1d-convolutions. Returns: the blurred tensor. Shape: - Input: :math:`(B, C, H, W)` - Output: :math:`(B, C, H, W)` Examples:: >>> input = torch.rand(2, 4, 5, 5) >>> gauss = GaussianBlur2d((3, 3), (1.5, 1.5)) >>> output = gauss(input) # 2x4x5x5 >>> output.shape torch.Size([2, 4, 5, 5]) """ def __init__( self, kernel_size: tuple[int, int] | int, sigma: tuple[float, float] | Tensor, border_type: str = 'reflect', separable: bool = True, ) -> None: super().__init__() self.kernel_size = kernel_size self.sigma = sigma self.border_type = border_type self.separable = separable def __repr__(self) -> str: return ( f"{self.__class__.__name__}" f"(kernel_size={self.kernel_size}, " f"sigma={self.sigma}, " f"border_type={self.border_type}, " f"separable={self.separable})" ) def forward(self, input: Tensor) -> Tensor: return gaussian_blur2d(input, self.kernel_size, self.sigma, self.border_type, self.separable)
@deprecated(replace_with='gaussian_blur2d', version='6.9.10') def gaussian_blur2d_t(*args: Any, **kwargs: Any) -> Tensor: return gaussian_blur2d(*args, **kwargs)