Source code for kornia.filters.filter

from __future__ import annotations

import torch.nn.functional as F

from kornia.core import Tensor, pad
from kornia.core.check import KORNIA_CHECK, KORNIA_CHECK_IS_TENSOR, KORNIA_CHECK_SHAPE

from .kernels import normalize_kernel2d

_VALID_BORDERS = {'constant', 'reflect', 'replicate', 'circular'}
_VALID_PADDING = {'valid', 'same'}
_VALID_BEHAVIOUR = {'conv', 'corr'}


def _compute_padding(kernel_size: list[int]) -> list[int]:
    """Compute padding tuple."""
    # 4 or 6 ints:  (padding_left, padding_right,padding_top,padding_bottom)
    # https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
    if len(kernel_size) < 2:
        raise AssertionError(kernel_size)
    computed = [k - 1 for k in kernel_size]

    # for even kernels we need to do asymmetric padding :(
    out_padding = 2 * len(kernel_size) * [0]

    for i in range(len(kernel_size)):
        computed_tmp = computed[-(i + 1)]

        pad_front = computed_tmp // 2
        pad_rear = computed_tmp - pad_front

        out_padding[2 * i + 0] = pad_front
        out_padding[2 * i + 1] = pad_rear

    return out_padding


[docs]def filter2d( input: Tensor, kernel: Tensor, border_type: str = 'reflect', normalized: bool = False, padding: str = 'same', behaviour: str = 'corr', ) -> Tensor: r"""Convolve a tensor with a 2d kernel. The function applies a given kernel to a tensor. The kernel is applied independently at each depth channel of the tensor. Before applying the kernel, the function applies padding according to the specified mode so that the output remains in the same shape. Args: input: the input tensor with shape of :math:`(B, C, H, W)`. kernel: the kernel to be convolved with the input tensor. The kernel shape must be :math:`(1, kH, kW)` or :math:`(B, kH, kW)`. border_type: the padding mode to be applied before convolving. The expected modes are: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. normalized: If True, kernel will be L1 normalized. padding: This defines the type of padding. 2 modes available ``'same'`` or ``'valid'``. behaviour: defines the convolution mode -- correlation (default), using pytorch conv2d, or true convolution (kernel is flipped). 2 modes available ``'corr'`` or ``'conv'``. Return: Tensor: the convolved tensor of same size and numbers of channels as the input with shape :math:`(B, C, H, W)`. Example: >>> input = torch.tensor([[[ ... [0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.], ... [0., 0., 5., 0., 0.], ... [0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.],]]]) >>> kernel = torch.ones(1, 3, 3) >>> filter2d(input, kernel, padding='same') tensor([[[[0., 0., 0., 0., 0.], [0., 5., 5., 5., 0.], [0., 5., 5., 5., 0.], [0., 5., 5., 5., 0.], [0., 0., 0., 0., 0.]]]]) """ KORNIA_CHECK_IS_TENSOR(input) KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W']) KORNIA_CHECK_IS_TENSOR(kernel) KORNIA_CHECK_SHAPE(kernel, ['B', 'H', 'W']) KORNIA_CHECK( str(border_type).lower() in _VALID_BORDERS, f'Invalid border, gotcha {border_type}. Expected one of {_VALID_BORDERS}', ) KORNIA_CHECK( str(padding).lower() in _VALID_PADDING, f'Invalid padding mode, gotcha {padding}. Expected one of {_VALID_PADDING}', ) KORNIA_CHECK( str(behaviour).lower() in _VALID_BEHAVIOUR, f'Invalid padding mode, gotcha {behaviour}. Expected one of {_VALID_BEHAVIOUR}', ) # prepare kernel b, c, h, w = input.shape if str(behaviour).lower() == 'conv': tmp_kernel = kernel.flip((-2, -1))[:, None, ...].to(device=input.device, dtype=input.dtype) else: tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype) # str(behaviour).lower() == 'conv': if normalized: tmp_kernel = normalize_kernel2d(tmp_kernel) tmp_kernel = tmp_kernel.expand(-1, c, -1, -1) height, width = tmp_kernel.shape[-2:] # pad the input tensor if padding == 'same': padding_shape: list[int] = _compute_padding([height, width]) input = pad(input, padding_shape, mode=border_type) # kernel and input tensor reshape to align element-wise or batch-wise params tmp_kernel = tmp_kernel.reshape(-1, 1, height, width) input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1)) # convolve the tensor with the kernel. output = F.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1) if padding == 'same': out = output.view(b, c, h, w) else: out = output.view(b, c, h - height + 1, w - width + 1) return out
[docs]def filter2d_separable( input: Tensor, kernel_x: Tensor, kernel_y: Tensor, border_type: str = 'reflect', normalized: bool = False, padding: str = 'same', ) -> Tensor: r"""Convolve a tensor with two 1d kernels, in x and y directions. The function applies a given kernel to a tensor. The kernel is applied independently at each depth channel of the tensor. Before applying the kernel, the function applies padding according to the specified mode so that the output remains in the same shape. Args: input: the input tensor with shape of :math:`(B, C, H, W)`. kernel_x: the kernel to be convolved with the input tensor. The kernel shape must be :math:`(1, kW)` or :math:`(B, kW)`. kernel_y: the kernel to be convolved with the input tensor. The kernel shape must be :math:`(1, kH)` or :math:`(B, kH)`. border_type: the padding mode to be applied before convolving. The expected modes are: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. normalized: If True, kernel will be L1 normalized. padding: This defines the type of padding. 2 modes available ``'same'`` or ``'valid'``. Return: Tensor: the convolved tensor of same size and numbers of channels as the input with shape :math:`(B, C, H, W)`. Example: >>> input = torch.tensor([[[ ... [0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.], ... [0., 0., 5., 0., 0.], ... [0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.],]]]) >>> kernel = torch.ones(1, 3) >>> filter2d_separable(input, kernel, kernel, padding='same') tensor([[[[0., 0., 0., 0., 0.], [0., 5., 5., 5., 0.], [0., 5., 5., 5., 0.], [0., 5., 5., 5., 0.], [0., 0., 0., 0., 0.]]]]) """ out_x = filter2d(input, kernel_x[..., None, :], border_type, normalized, padding) out = filter2d(out_x, kernel_y[..., None], border_type, normalized, padding) return out
[docs]def filter3d(input: Tensor, kernel: Tensor, border_type: str = 'replicate', normalized: bool = False) -> Tensor: r"""Convolve a tensor with a 3d kernel. The function applies a given kernel to a tensor. The kernel is applied independently at each depth channel of the tensor. Before applying the kernel, the function applies padding according to the specified mode so that the output remains in the same shape. Args: input: the input tensor with shape of :math:`(B, C, D, H, W)`. kernel: the kernel to be convolved with the input tensor. The kernel shape must be :math:`(1, kD, kH, kW)` or :math:`(B, kD, kH, kW)`. border_type: the padding mode to be applied before convolving. The expected modes are: ``'constant'``, ``'replicate'`` or ``'circular'``. normalized: If True, kernel will be L1 normalized. Return: the convolved tensor of same size and numbers of channels as the input with shape :math:`(B, C, D, H, W)`. Example: >>> input = torch.tensor([[[ ... [[0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.]], ... [[0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.], ... [0., 0., 5., 0., 0.], ... [0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.]], ... [[0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.], ... [0., 0., 0., 0., 0.]] ... ]]]) >>> kernel = torch.ones(1, 3, 3, 3) >>> filter3d(input, kernel) tensor([[[[[0., 0., 0., 0., 0.], [0., 5., 5., 5., 0.], [0., 5., 5., 5., 0.], [0., 5., 5., 5., 0.], [0., 0., 0., 0., 0.]], <BLANKLINE> [[0., 0., 0., 0., 0.], [0., 5., 5., 5., 0.], [0., 5., 5., 5., 0.], [0., 5., 5., 5., 0.], [0., 0., 0., 0., 0.]], <BLANKLINE> [[0., 0., 0., 0., 0.], [0., 5., 5., 5., 0.], [0., 5., 5., 5., 0.], [0., 5., 5., 5., 0.], [0., 0., 0., 0., 0.]]]]]) """ KORNIA_CHECK_IS_TENSOR(input) KORNIA_CHECK_SHAPE(input, ['B', 'C', 'D', 'H', 'W']) KORNIA_CHECK_IS_TENSOR(kernel) KORNIA_CHECK_SHAPE(kernel, ['B', 'D', 'H', 'W']) KORNIA_CHECK( str(border_type).lower() in _VALID_BORDERS, f'Invalid border, gotcha {border_type}. Expected one of {_VALID_BORDERS}', ) # prepare kernel b, c, d, h, w = input.shape tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype) if normalized: bk, dk, hk, wk = kernel.shape tmp_kernel = normalize_kernel2d(tmp_kernel.view(bk, dk, hk * wk)).view_as(tmp_kernel) tmp_kernel = tmp_kernel.expand(-1, c, -1, -1, -1) # pad the input tensor depth, height, width = tmp_kernel.shape[-3:] padding_shape: list[int] = _compute_padding([depth, height, width]) input_pad = pad(input, padding_shape, mode=border_type) # kernel and input tensor reshape to align element-wise or batch-wise params tmp_kernel = tmp_kernel.reshape(-1, 1, depth, height, width) input_pad = input_pad.view(-1, tmp_kernel.size(0), input_pad.size(-3), input_pad.size(-2), input_pad.size(-1)) # convolve the tensor with the kernel. output = F.conv3d(input_pad, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1) return output.view(b, c, d, h, w)