Source code for kornia.feature.defmo

from typing import Callable, Dict, List, Optional, Type

import torch
import torch.nn as nn

from kornia.core import Module, Tensor, concatenate, stack
from kornia.utils.helpers import map_location_to_cpu

urls: Dict[str, str] = {}
urls["defmo_encoder"] = "http://ptak.felk.cvut.cz/personal/rozumden/defmo_saved_models/encoder_best.pt"
urls["defmo_rendering"] = "http://ptak.felk.cvut.cz/personal/rozumden/defmo_saved_models/rendering_best.pt"


# conv1x1, conv3x3, Bottleneck, ResNet are taken from:
# https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py


def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
    """1x1 convolution."""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
    """3x3 convolution with padding."""
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )


class Bottleneck(Module):
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., Module]] = None,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.0)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class ResNet(Module):
    def __init__(
        self,
        block: Type[Bottleneck],
        layers: List[int],
        num_classes: int = 1000,
        zero_init_residual: bool = False,
        groups: int = 1,
        width_per_group: int = 64,
        replace_stride_with_dilation: Optional[List[bool]] = None,
        norm_layer: Optional[Callable[..., Module]] = None,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError(
                "replace_stride_with_dilation should be None "
                "or a 3-element tuple, got {}".format(replace_stride_with_dilation)
            )
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck) and isinstance(m.bn3.weight, Tensor):
                    nn.init.constant_(m.bn3.weight, 0)

    def _make_layer(
        self, block: Type[Bottleneck], planes: int, blocks: int, stride: int = 1, dilate: bool = False
    ) -> nn.Sequential:
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion)
            )

        layers = []
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )

        return nn.Sequential(*layers)

    def _forward_impl(self, x: Tensor) -> Tensor:
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


class EncoderDeFMO(Module):
    def __init__(self):
        super().__init__()
        model = ResNet(Bottleneck, [3, 4, 6, 3])  # ResNet50
        modelc1 = nn.Sequential(*list(model.children())[:3])
        modelc2 = nn.Sequential(*list(model.children())[4:8])
        modelc1[0] = nn.Conv2d(6, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
        self.net = nn.Sequential(modelc1, modelc2)

    def forward(self, input_data: Tensor) -> Tensor:
        return self.net(input_data)


class RenderingDeFMO(Module):
    def __init__(self):
        super().__init__()
        self.tsr_steps: int = 24
        model = nn.Sequential(
            nn.Conv2d(2049, 1024, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
            nn.ReLU(inplace=True),
            Bottleneck(1024, 256),
            nn.PixelShuffle(2),
            Bottleneck(256, 64),
            nn.PixelShuffle(2),
            Bottleneck(64, 16),
            nn.PixelShuffle(2),
            nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1, bias=False),
            nn.PixelShuffle(2),
            nn.Conv2d(4, 4, kernel_size=3, stride=1, padding=1, bias=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(4, 4, kernel_size=3, stride=1, padding=1, bias=True),
        )
        self.net = model
        self.times = torch.linspace(0, 1, self.tsr_steps)

    def forward(self, latent: Tensor) -> Tensor:
        times = self.times.to(latent.device).unsqueeze(0).repeat(latent.shape[0], 1)
        renders = []
        for ki in range(times.shape[1]):
            t_tensor = (
                # TODO: replace by after deprecate pytorch 1.6
                # times[list(range(times.shape[0])), ki]
                times[[x for x in range(times.shape[0])], ki]  # skipcq: PYL-R1721
                .unsqueeze(-1)
                .unsqueeze(-1)
                .unsqueeze(-1)
                .repeat(1, 1, latent.shape[2], latent.shape[3])
            )
            latenti = concatenate((t_tensor, latent), 1)
            result = self.net(latenti)
            renders.append(result)
        renders_stacked = stack(renders, 1).contiguous()
        renders_stacked[:, :, :4] = torch.sigmoid(renders_stacked[:, :, :4])
        return renders_stacked


[docs]class DeFMO(Module): """Module that disentangle a fast-moving object from the background and performs deblurring. This is based on the original code from paper "DeFMO: Deblurring and Shape Recovery of Fast Moving Objects". See :cite:`DeFMO2021` for more details. Args: pretrained: Download and set pretrained weights to the model. Default: false. Returns: Temporal super-resolution without background. Shape: - Input: (B, 6, H, W) - Output: (B, S, 4, H, W) Examples: >>> import kornia >>> input = torch.rand(2, 6, 240, 320) >>> defmo = kornia.feature.DeFMO() >>> tsr_nobgr = defmo(input) # 2x24x4x240x320 """ def __init__(self, pretrained: bool = False) -> None: super().__init__() self.encoder = EncoderDeFMO() self.rendering = RenderingDeFMO() # use torch.hub to load pretrained model if pretrained: pretrained_dict = torch.hub.load_state_dict_from_url( urls['defmo_encoder'], map_location=map_location_to_cpu ) self.encoder.load_state_dict(pretrained_dict, strict=True) pretrained_dict_ren = torch.hub.load_state_dict_from_url( urls['defmo_rendering'], map_location=map_location_to_cpu ) self.rendering.load_state_dict(pretrained_dict_ren, strict=True) self.eval()
[docs] def forward(self, input_data: Tensor) -> Tensor: latent = self.encoder(input_data) x_out = self.rendering(latent) return x_out