Source code for kornia.color.hls

import math
from typing import Tuple

import torch

from kornia.core import Module, Tensor, stack, tensor, where


[docs]def rgb_to_hls(image: Tensor, eps: float = 1e-8) -> Tensor: r"""Convert an RGB image to HLS. .. image:: _static/img/rgb_to_hls.png The image data is assumed to be in the range of (0, 1). NOTE: this method cannot be compiled with JIT in pytohrch < 1.7.0 Args: image: RGB image to be converted to HLS with shape :math:`(*, 3, H, W)`. eps: epsilon value to avoid div by zero. Returns: HLS version of the image with shape :math:`(*, 3, H, W)`. Example: >>> input = torch.rand(2, 3, 4, 5) >>> output = rgb_to_hls(input) # 2x3x4x5 """ if not isinstance(image, Tensor): raise TypeError(f"Input type is not a Tensor. Got {type(image)}") if len(image.shape) < 3 or image.shape[-3] != 3: raise ValueError(f"Input size must have a shape of (*, 3, H, W). Got {image.shape}") _RGB2HSL_IDX = tensor([[[0.0]], [[1.0]], [[2.0]]], device=image.device, dtype=image.dtype) # 3x1x1 _img_max: Tuple[Tensor, Tensor] = image.max(-3) maxc = _img_max[0] imax = _img_max[1] minc: Tensor = image.min(-3)[0] if image.requires_grad: l_ = maxc + minc s = maxc - minc # weird behaviour with undefined vars in JIT... # scripting requires image_hls be defined even if it is not used :S h = l_ # assign to any tensor... image_hls = l_ # assign to any tensor... else: # define the resulting image to avoid the torch.stack([h, l, s]) # so, h, l and s require inplace operations # NOTE: stack() increases in a 10% the cost in colab image_hls = torch.empty_like(image) h, l_, s = image_hls[..., 0, :, :], image_hls[..., 1, :, :], image_hls[..., 2, :, :] torch.add(maxc, minc, out=l_) # l = max + min torch.sub(maxc, minc, out=s) # s = max - min # precompute image / (max - min) im = image / (s + eps).unsqueeze(-3) # epsilon cannot be inside the torch.where to avoid precision issues s /= where(l_ < 1.0, l_, 2.0 - l_) + eps # saturation l_ /= 2 # luminance # note that r,g and b were previously div by (max - min) r, g, b = im[..., 0, :, :], im[..., 1, :, :], im[..., 2, :, :] # h[imax == 0] = (((g - b) / (max - min)) % 6)[imax == 0] # h[imax == 1] = (((b - r) / (max - min)) + 2)[imax == 1] # h[imax == 2] = (((r - g) / (max - min)) + 4)[imax == 2] cond = imax[..., None, :, :] == _RGB2HSL_IDX if image.requires_grad: h = ((g - b) % 6) * cond[..., 0, :, :] else: # replacing `torch.mul` with `out=h` with python * operator gives wrong results torch.mul((g - b) % 6, cond[..., 0, :, :], out=h) h += (b - r + 2) * cond[..., 1, :, :] h += (r - g + 4) * cond[..., 2, :, :] # h = 2.0 * math.pi * (60.0 * h) / 360.0 h *= math.pi / 3.0 # hue [0, 2*pi] if image.requires_grad: return stack([h, l_, s], -3) return image_hls
[docs]def hls_to_rgb(image: Tensor) -> Tensor: r"""Convert a HLS image to RGB. The image data is assumed to be in the range of (0, 1). Args: image: HLS image to be converted to RGB with shape :math:`(*, 3, H, W)`. Returns: RGB version of the image with shape :math:`(*, 3, H, W)`. Example: >>> input = torch.rand(2, 3, 4, 5) >>> output = hls_to_rgb(input) # 2x3x4x5 """ if not isinstance(image, Tensor): raise TypeError(f"Input type is not a Tensor. Got {type(image)}") if len(image.shape) < 3 or image.shape[-3] != 3: raise ValueError(f"Input size must have a shape of (*, 3, H, W). Got {image.shape}") _HLS2RGB = tensor([[[0.0]], [[8.0]], [[4.0]]], device=image.device, dtype=image.dtype) # 3x1x1 im: Tensor = image.unsqueeze(-4) h_ch: Tensor = im[..., 0, :, :] l_ch: Tensor = im[..., 1, :, :] s_ch: Tensor = im[..., 2, :, :] h_ch = h_ch * (6 / math.pi) # h * 360 / (2 * math.pi) / 30 a = s_ch * torch.min(l_ch, 1.0 - l_ch) # kr = (0 + h) % 12 # kg = (8 + h) % 12 # kb = (4 + h) % 12 k: Tensor = (h_ch + _HLS2RGB) % 12 # l - a * max(min(min(k - 3.0, 9.0 - k), 1), -1) mink = torch.min(k - 3.0, 9.0 - k) return torch.addcmul(l_ch, a, mink.clamp_(min=-1.0, max=1.0), value=-1)
[docs]class RgbToHls(Module): r"""Convert an image from RGB to HLS. The image data is assumed to be in the range of (0, 1). Returns: HLS version of the image. Shape: - image: :math:`(*, 3, H, W)` - output: :math:`(*, 3, H, W)` Examples: >>> input = torch.rand(2, 3, 4, 5) >>> hls = RgbToHls() >>> output = hls(input) # 2x3x4x5 """ def forward(self, image: Tensor) -> Tensor: return rgb_to_hls(image)
[docs]class HlsToRgb(Module): r"""Convert an image from HLS to RGB. The image data is assumed to be in the range of (0, 1). Returns: RGB version of the image. Shape: - input: :math:`(*, 3, H, W)` - output: :math:`(*, 3, H, W)` Reference: https://en.wikipedia.org/wiki/HSL_and_HSV Examples: >>> input = torch.rand(2, 3, 4, 5) >>> rgb = HlsToRgb() >>> output = rgb(input) # 2x3x4x5 """ def forward(self, image: Tensor) -> Tensor: return hls_to_rgb(image)