Source code for kornia.augmentation._3d.geometric.affine

from typing import Any, Dict, Optional, Tuple, Union

from kornia.augmentation import random_generator as rg
from kornia.augmentation._3d.base import AugmentationBase3D
from kornia.constants import Resample
from kornia.core import Tensor
from kornia.geometry import deg2rad, get_affine_matrix3d, warp_affine3d

[docs]class RandomAffine3D(AugmentationBase3D): r"""Apply affine transformation 3D volumes (5D tensor). The transformation is computed so that the center is kept invariant. Args: degrees: Range of yaw (x-axis), pitch (y-axis), roll (z-axis) to select from. If degrees is a number, then yaw, pitch, roll will be generated from the range of (-degrees, +degrees). If degrees is a tuple of (min, max), then yaw, pitch, roll will be generated from the range of (min, max). If degrees is a list of floats [a, b, c], then yaw, pitch, roll will be generated from (-a, a), (-b, b) and (-c, c). If degrees is a list of tuple ((a, b), (m, n), (x, y)), then yaw, pitch, roll will be generated from (a, b), (m, n) and (x, y). Set to 0 to deactivate rotations. translate: tuple of maximum absolute fraction for horizontal, vertical and depthical translations (dx,dy,dz). For example translate=(a, b, c), then horizontal shift will be randomly sampled in the range -img_width * a < dx < img_width * a vertical shift will be randomly sampled in the range -img_height * b < dy < img_height * b. depthical shift will be randomly sampled in the range -img_depth * c < dz < img_depth * c. Will not translate by default. scale: scaling factor interval. If (a, b) represents isotropic scaling, the scale is randomly sampled from the range a <= scale <= b. If ((a, b), (c, d), (e, f)), the scale is randomly sampled from the range a <= scale_x <= b, c <= scale_y <= d, e <= scale_z <= f. Will keep original scale by default. shears: Range of degrees to select from. If shear is a number, a shear to the 6 facets in the range (-shear, +shear) will be applied. If shear is a tuple of 2 values, a shear to the 6 facets in the range (shear[0], shear[1]) will be applied. If shear is a tuple of 6 values, a shear to the i-th facet in the range (-shear[i], shear[i]) will be applied. If shear is a tuple of 6 tuples, a shear to the i-th facet in the range (-shear[i, 0], shear[i, 1]) will be applied. resample: resample mode from "nearest" (0) or "bilinear" (1). return_transform: if ``True`` return the matrix describing the transformation applied to each. same_on_batch: apply the same transformation across the batch. align_corners: interpolation flag. keepdim: whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). Default: False. Shape: - Input: :math:`(C, D, H, W)` or :math:`(B, C, D, H, W)`, Optional: :math:`(B, 4, 4)` - Output: :math:`(B, C, D, H, W)` Note: Input tensor must be float and normalized into [0, 1] for the best differentiability support. Additionally, this function accepts another transformation tensor (:math:`(B, 4, 4)`), then the applied transformation will be merged int to the input transformation tensor and returned. Examples: >>> import torch >>> rng = torch.manual_seed(0) >>> input = torch.rand(1, 1, 3, 3, 3) >>> aug = RandomAffine3D((15., 20., 20.), p=1.) >>> aug(input), aug.transform_matrix (tensor([[[[[0.4503, 0.4763, 0.1680], [0.2029, 0.4267, 0.3515], [0.3195, 0.5436, 0.3706]], <BLANKLINE> [[0.5255, 0.3508, 0.4858], [0.0795, 0.1689, 0.4220], [0.5306, 0.7234, 0.6879]], <BLANKLINE> [[0.2971, 0.2746, 0.3471], [0.4924, 0.4960, 0.6460], [0.3187, 0.4556, 0.7596]]]]]), tensor([[[ 0.9722, -0.0603, 0.2262, -0.1381], [ 0.1131, 0.9669, -0.2286, 0.1486], [-0.2049, 0.2478, 0.9469, 0.0102], [ 0.0000, 0.0000, 0.0000, 1.0000]]])) To apply the exact augmenation again, you may take the advantage of the previous parameter state: >>> input = torch.rand(1, 3, 32, 32, 32) >>> aug = RandomAffine3D((15., 20., 20.), p=1.) >>> (aug(input) == aug(input, params=aug._params)).all() tensor(True) """ def __init__( self, degrees: Union[ Tensor, float, Tuple[float, float], Tuple[float, float, float], Tuple[Tuple[float, float], Tuple[float, float], Tuple[float, float]], ], translate: Optional[Union[Tensor, Tuple[float, float, float]]] = None, scale: Optional[ Union[Tensor, Tuple[float, float], Tuple[Tuple[float, float], Tuple[float, float], Tuple[float, float]]] ] = None, shears: Union[ None, Tensor, float, Tuple[float, float], Tuple[float, float, float, float, float, float], Tuple[ Tuple[float, float], Tuple[float, float], Tuple[float, float], Tuple[float, float], Tuple[float, float], Tuple[float, float], ], ] = None, resample: Union[str, int, Resample] = Resample.BILINEAR.name, same_on_batch: bool = False, align_corners: bool = False, p: float = 0.5, keepdim: bool = False, return_transform: Optional[bool] = None, ) -> None: super().__init__(p=p, return_transform=return_transform, same_on_batch=same_on_batch, keepdim=keepdim) self.degrees = degrees self.shears = shears self.translate = translate self.scale = scale self.flags = dict(resample=Resample.get(resample), align_corners=align_corners) self._param_generator = rg.AffineGenerator3D(degrees, translate, scale, shears) def compute_transformation(self, input: Tensor, params: Dict[str, Tensor], flags: Dict[str, Any]) -> Tensor: transform: Tensor = get_affine_matrix3d( params["translations"], params["center"], params["scale"], params["angles"], deg2rad(params["sxy"]), deg2rad(params["sxz"]), deg2rad(params["syx"]), deg2rad(params["syz"]), deg2rad(params["szx"]), deg2rad(params["szy"]), ).to(input) return transform def apply_transform( self, input: Tensor, params: Dict[str, Tensor], flags: Dict[str, Any], transform: Optional[Tensor] = None ) -> Tensor: if not isinstance(transform, Tensor): raise TypeError(f'Expected the transform to be a Tensor. Gotcha {type(transform)}') return warp_affine3d( input, transform[:, :3, :], (input.shape[-3], input.shape[-2], input.shape[-1]), flags["resample"].name.lower(), align_corners=flags["align_corners"], )