Source code for kornia.augmentation._2d.intensity.normalize

from typing import Any, Dict, List, Optional, Tuple, Union

import torch
from torch import Tensor

from kornia.augmentation._2d.intensity.base import IntensityAugmentationBase2D
from kornia.enhance import normalize


[docs]class Normalize(IntensityAugmentationBase2D): r"""Normalize tensor images with mean and standard deviation. .. math:: \text{input[channel] = (input[channel] - mean[channel]) / std[channel]} Where `mean` is :math:`(M_1, ..., M_n)` and `std` :math:`(S_1, ..., S_n)` for `n` channels, Args: mean: Mean for each channel. std: Standard deviations for each channel. p: probability of applying the transformation. keepdim: whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). Return: Normalised tensor with same size as input :math:`(*, C, H, W)`. .. note:: This function internally uses :func:`kornia.enhance.normalize`. Examples: >>> norm = Normalize(mean=torch.zeros(4), std=torch.ones(4)) >>> x = torch.rand(1, 4, 3, 3) >>> out = norm(x) >>> out.shape torch.Size([1, 4, 3, 3]) """ def __init__( self, mean: Union[Tensor, Tuple[float], List[float], float], std: Union[Tensor, Tuple[float], List[float], float], p: float = 1.0, keepdim: bool = False, return_transform: Optional[bool] = None, ) -> None: super().__init__(p=p, return_transform=return_transform, same_on_batch=True, keepdim=keepdim) if isinstance(mean, float): mean = torch.tensor([mean]) if isinstance(std, float): std = torch.tensor([std]) if isinstance(mean, (tuple, list)): mean = torch.tensor(mean) if isinstance(std, (tuple, list)): std = torch.tensor(std) self.flags = dict(mean=mean, std=std) def apply_transform( self, input: Tensor, params: Dict[str, Tensor], flags: Dict[str, Any], transform: Optional[Tensor] = None ) -> Tensor: return normalize(input, flags["mean"], flags["std"])