import warnings
from typing import Any, Dict, Optional, Tuple, Union
from torch import Tensor
from kornia.augmentation import random_generator as rg
from kornia.augmentation._2d.intensity.base import IntensityAugmentationBase2D
from kornia.constants import BorderType
from kornia.filters import gaussian_blur2d
[docs]class RandomGaussianBlur(IntensityAugmentationBase2D):
r"""Apply gaussian blur given tensor image or a batch of tensor images randomly. The standard deviation is
sampled for each instance.
.. image:: _static/img/RandomGaussianBlur.png
Args:
kernel_size: the size of the kernel.
sigma: the range for the standard deviation of the kernel.
border_type: the padding mode to be applied before convolving.
The expected modes are: ``constant``, ``reflect``, ``replicate`` or ``circular``.
separable: run as composition of two 1d-convolutions.
same_on_batch: apply the same transformation across the batch.
p: probability of applying the transformation.
keepdim: whether to keep the output shape the same as input (True) or broadcast it
to the batch form (False).
silence_instantiation_warning: if True, silence the warning at instantiation.
Shape:
- Input: :math:`(C, H, W)` or :math:`(B, C, H, W)`, Optional: :math:`(B, 3, 3)`
- Output: :math:`(B, C, H, W)`
.. note::
This function internally uses :func:`kornia.filters.gaussian_blur2d`.
Examples:
>>> rng = torch.manual_seed(0)
>>> input = torch.rand(1, 1, 5, 5)
>>> blur = RandomGaussianBlur((3, 3), (0.1, 2.0), p=1.)
>>> blur(input)
tensor([[[[0.5941, 0.5833, 0.5022, 0.4384, 0.3934],
[0.5310, 0.4964, 0.4113, 0.3637, 0.3472],
[0.4991, 0.4997, 0.4312, 0.3620, 0.3081],
[0.6082, 0.5667, 0.4954, 0.3825, 0.3508],
[0.7042, 0.6849, 0.6275, 0.4753, 0.4105]]]])
To apply the exact augmenation again, you may take the advantage of the previous parameter state:
>>> input = torch.randn(1, 3, 32, 32)
>>> aug = RandomGaussianBlur((3, 3), (0.1, 2.0), p=1.)
>>> (aug(input) == aug(input, params=aug._params)).all()
tensor(True)
"""
def __init__(
self,
kernel_size: Union[Tuple[int, int], int],
sigma: Union[Tuple[float, float], Tensor],
border_type: str = "reflect",
separable: bool = True,
same_on_batch: bool = False,
p: float = 0.5,
keepdim: bool = False,
silence_instantiation_warning: bool = False,
) -> None:
super().__init__(p=p, same_on_batch=same_on_batch, p_batch=1.0, keepdim=keepdim)
if not silence_instantiation_warning:
warnings.warn(
"`RandomGaussianBlur` has changed its behavior and now randomly sample sigma for both axes. "
"To retrieve old behavior please consider using kornia.filters.GaussianBlur2d",
category=DeprecationWarning,
)
self.flags = {"kernel_size": kernel_size, "separable": separable, "border_type": BorderType.get(border_type)}
self._param_generator = rg.RandomGaussianBlurGenerator(sigma)
def apply_transform(
self, input: Tensor, params: Dict[str, Tensor], flags: Dict[str, Any], transform: Optional[Tensor] = None
) -> Tensor:
sigma = params["sigma"].to(device=input.device, dtype=input.dtype).unsqueeze(-1).expand(-1, 2)
return gaussian_blur2d(
input,
self.flags["kernel_size"],
sigma,
self.flags["border_type"].name.lower(),
separable=self.flags["separable"],
)