Source code for kornia.filters.motion

from typing import Tuple, Union

import torch
import torch.nn as nn

import kornia
from kornia.filters.kernels_geometry import get_motion_kernel2d, get_motion_kernel3d


[docs]class MotionBlur(nn.Module): r"""Blur 2D images (4D tensor) using the motion filter. Args: kernel_size: motion kernel width and height. It should be odd and positive. angle: angle of the motion blur in degrees (anti-clockwise rotation). direction: forward/backward direction of the motion blur. Lower values towards -1.0 will point the motion blur towards the back (with angle provided via angle), while higher values towards 1.0 will point the motion blur forward. A value of 0.0 leads to a uniformly (but still angled) motion blur. border_type: the padding mode to be applied before convolving. The expected modes are: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Returns: the blurred input tensor. Shape: - Input: :math:`(B, C, H, W)` - Output: :math:`(B, C, H, W)` Examples: >>> input = torch.rand(2, 4, 5, 7) >>> motion_blur = MotionBlur(3, 35., 0.5) >>> output = motion_blur(input) # 2x4x5x7 """ def __init__(self, kernel_size: int, angle: float, direction: float, border_type: str = 'constant') -> None: super().__init__() self.kernel_size = kernel_size self.angle: float = angle self.direction: float = direction self.border_type: str = border_type def __repr__(self) -> str: return ( f'{self.__class__.__name__} (kernel_size={self.kernel_size}, ' f'angle={self.angle}, direction={self.direction}, border_type={self.border_type})' ) def forward(self, x: torch.Tensor): return motion_blur(x, self.kernel_size, self.angle, self.direction, self.border_type)
class MotionBlur3D(nn.Module): r"""Blur 3D volumes (5D tensor) using the motion filter. Args: kernel_size: motion kernel width and height. It should be odd and positive. angle: Range of yaw (x-axis), pitch (y-axis), roll (z-axis) to select from. direction: forward/backward direction of the motion blur. Lower values towards -1.0 will point the motion blur towards the back (with angle provided via angle), while higher values towards 1.0 will point the motion blur forward. A value of 0.0 leads to a uniformly (but still angled) motion blur. border_type: the padding mode to be applied before convolving. The expected modes are: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Returns: the blurred input tensor. Shape: - Input: :math:`(B, C, D, H, W)` - Output: :math:`(B, C, D, H, W)` Examples: >>> input = torch.rand(2, 4, 5, 7, 9) >>> motion_blur = MotionBlur3D(3, 35., 0.5) >>> output = motion_blur(input) # 2x4x5x7x9 """ def __init__( self, kernel_size: int, angle: Union[float, Tuple[float, float, float]], direction: float, border_type: str = 'constant', ) -> None: super().__init__() self.kernel_size = kernel_size self.angle: Tuple[float, float, float] if isinstance(angle, float): self.angle = (angle, angle, angle) elif isinstance(angle, (tuple, list)) and len(angle) == 3: self.angle = angle else: raise ValueError(f"Expect angle to be either a float or a tuple of floats. Got {angle}.") self.direction: float = direction self.border_type: str = border_type def __repr__(self) -> str: return ( f'{self.__class__.__name__} (kernel_size={self.kernel_size}, ' f'angle={self.angle}, direction={self.direction}, border_type={self.border_type})' ) def forward(self, x: torch.Tensor): return motion_blur3d(x, self.kernel_size, self.angle, self.direction, self.border_type)
[docs]def motion_blur( input: torch.Tensor, kernel_size: int, angle: Union[float, torch.Tensor], direction: Union[float, torch.Tensor], border_type: str = 'constant', mode: str = 'nearest', ) -> torch.Tensor: r"""Perform motion blur on tensor images. .. image:: _static/img/motion_blur.png Args: input: the input tensor with shape :math:`(B, C, H, W)`. kernel_size: motion kernel width and height. It should be odd and positive. angle (Union[torch.Tensor, float]): angle of the motion blur in degrees (anti-clockwise rotation). If tensor, it must be :math:`(B,)`. direction : forward/backward direction of the motion blur. Lower values towards -1.0 will point the motion blur towards the back (with angle provided via angle), while higher values towards 1.0 will point the motion blur forward. A value of 0.0 leads to a uniformly (but still angled) motion blur. If tensor, it must be :math:`(B,)`. border_type: the padding mode to be applied before convolving. The expected modes are: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'constant'``. mode: interpolation mode for rotating the kernel. ``'bilinear'`` or ``'nearest'``. Return: the blurred image with shape :math:`(B, C, H, W)`. Example: >>> input = torch.randn(1, 3, 80, 90).repeat(2, 1, 1, 1) >>> # perform exact motion blur across the batch >>> out_1 = motion_blur(input, 5, 90., 1) >>> torch.allclose(out_1[0], out_1[1]) True >>> # perform element-wise motion blur across the batch >>> out_1 = motion_blur(input, 5, torch.tensor([90., 180,]), torch.tensor([1., -1.])) >>> torch.allclose(out_1[0], out_1[1]) False """ if border_type not in ["constant", "reflect", "replicate", "circular"]: raise AssertionError kernel: torch.Tensor = get_motion_kernel2d(kernel_size, angle, direction, mode) return kornia.filter2d(input, kernel, border_type)
def motion_blur3d( input: torch.Tensor, kernel_size: int, angle: Union[Tuple[float, float, float], torch.Tensor], direction: Union[float, torch.Tensor], border_type: str = 'constant', mode: str = 'nearest', ) -> torch.Tensor: r"""Perform motion blur on 3D volumes (5D tensor). Args: input: the input tensor with shape :math:`(B, C, D, H, W)`. kernel_size: motion kernel width, height and depth. It should be odd and positive. angle: Range of yaw (x-axis), pitch (y-axis), roll (z-axis) to select from. If tensor, it must be :math:`(B, 3)`. direction: forward/backward direction of the motion blur. Lower values towards -1.0 will point the motion blur towards the back (with angle provided via angle), while higher values towards 1.0 will point the motion blur forward. A value of 0.0 leads to a uniformly (but still angled) motion blur. If tensor, it must be :math:`(B,)`. border_type: the padding mode to be applied before convolving. The expected modes are: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'constant'``. mode: interpolation mode for rotating the kernel. ``'bilinear'`` or ``'nearest'``. Return: the blurred image with shape :math:`(B, C, D, H, W)`. Example: >>> input = torch.randn(1, 3, 120, 80, 90).repeat(2, 1, 1, 1, 1) >>> # perform exact motion blur across the batch >>> out_1 = motion_blur3d(input, 5, (0., 90., 90.), 1) >>> torch.allclose(out_1[0], out_1[1]) True >>> # perform element-wise motion blur across the batch >>> out_1 = motion_blur3d(input, 5, torch.tensor([[0., 90., 90.], [90., 180., 0.]]), torch.tensor([1., -1.])) >>> torch.allclose(out_1[0], out_1[1]) False """ if border_type not in ["constant", "reflect", "replicate", "circular"]: raise AssertionError kernel: torch.Tensor = get_motion_kernel3d(kernel_size, angle, direction, mode) return kornia.filter3d(input, kernel, border_type)